Modélisation statistique des débits liquides – débits solides dans les zones semi arides « cours d'eau de Mekerra à Sidi Bel Abbès - Bassin Versant de la MACTA »

Hayet MADANI CHERIF* Abd Erezzak BOUANANI * Mohamed ERRIH*

Résumé

L'importance de l'eau en tant que support de vie et de facteur régulateur du développement d'un pays est universellement reconnue.

Aussi est il nécessaire de la quantifier et de la gérer aussi rigoureusement que possible.

Si les ressources en eau de surface doivent être mobilisées pour les différents besoins (agricultures, implantations de barrages et de retenues collinaires) en revanche et en raison des méthodes inadaptées actuellement utilisées, elles posent un problème majeur lorsqu'il s'agit de quantifier les éléments du bilan hydrique et cerner les problèmes de recharges des aquifères.

Le transport solide dans un cours d'eau constitue la seconde phase de l'érosion. Il relève essentiellement et met en jeu les diverses formes d'écoulement de l'eau dans la nature. L'entraînement des particules solides par un écoulement liquide est principalement fonction de la dimension de ces particules et des caractéristiques hydrauliques du courant transporteur. Donc il s'agit de mettre en évidence par des méthodes simples les variables significatives, indépendantes, capables de résumer l'ensemble des facteurs qui entrent en jeu. Alors, l'objectif de cette étude est d'améliorer la compréhension du phénomène de transport solide sous climat méditerranéen et semi aride en mettant au point des outils simples et pratiques permettant l'estimation du transport solide, paramètre nécessaire à la planification, l'aménagement et la gestion des ressources hydrauliques.

La mise en place d'outils fiables pour le calcul de la garde d'envasement des retenues de barrages n'est possible qu'à travers l'étude du transport solide, ce qui en soi permet la maîtrise et la lutte contre l'érosion et l'envasement des barrages réduisant la capacité utile de mobilisation des ressources en eau superficielles des ouvrages. Dans cet optique, le sous bassin versant de Sidi Bel Abbés qui contrôle oued Mekerra (Bassin versant de la Macta) a été choisi afin d'étudier le phénomène de transport solide en suspension et la modélisation et permettra d'évaluer les quantités des sédiments transportés par oued Mekerra et de préciser la dynamique érosive dans notre sous bassin indiqué au préalable, et par conséquent d'en tirer des conclusions quant à l'envasement des ouvrages et la perte en sol dans l'écosystème.

Notre travail s'articule essentiellement sur des données hydrométriques et hydrauliques (débit liquide instantanés, concentrations instantanées des sédiments, hauteurs d'eau...) fournies par l'ANRH d'Oran, ensuite nous tenterons d'établir quelques modèles analytiques et descriptifs débit liquide – débit solide, basés sur une approche statistique d'analyse des chroniques des données et de corrélations simples.

L'estimation des sédiments en suspension se fait par la division de la courbe de fréquence des débits liquides en plusieurs intervalles en précisant les crues et pour chaque débit liquide nous avons calculé le débit solide, ensuite nous avons établi des relations :

 $Q_s = f(Q_l)$ durant les périodes suivantes : Annuelle, Automne, Hivers, Printemps, Eté. Après avoir trouvé le modèle qui précise l'interrelation entre les différents paramètres hydrologiques, nous avons calculé le taux d'abrasion par rapport à la surface du sous bassin de Sidi Bel Abbés.

Mots clés: Algérie, Bassin versant, Débit liquide – Débit solide, Modèle Statistique.

^{*} Département d'hydraulique, USTO-MB

Introduction

L'ampleur de l'érosion et du transport solide dans les bassins versants des zones semi-arides méditerranéennes a suscité l'intérêt d'un grand nombre de chercheurs et ingénieurs qui ont multiplié cette dernière décennie, les études et les investigations, pour essayer de comprendre et d'expliquer les mécanismes de ces phénomènes, leurs causes et leurs conséquences.

Grâce au développement du réseau hydrométrique géré par l'agence Nationale Des Ressources Hydrauliques (A.N.R.H), un nombre important de données sur les transports solides des Oueds Algériens a été requis. Ces données ont permis d'entreprendre d'importantes études quantitatives des différents phénomènes érosifs dans certains bassins versant de l'Algérie Septentrionale dont notre étude sur le sous bassin versant de Mekerra et dont on a choisi la station de Sidi Bel Abbés.

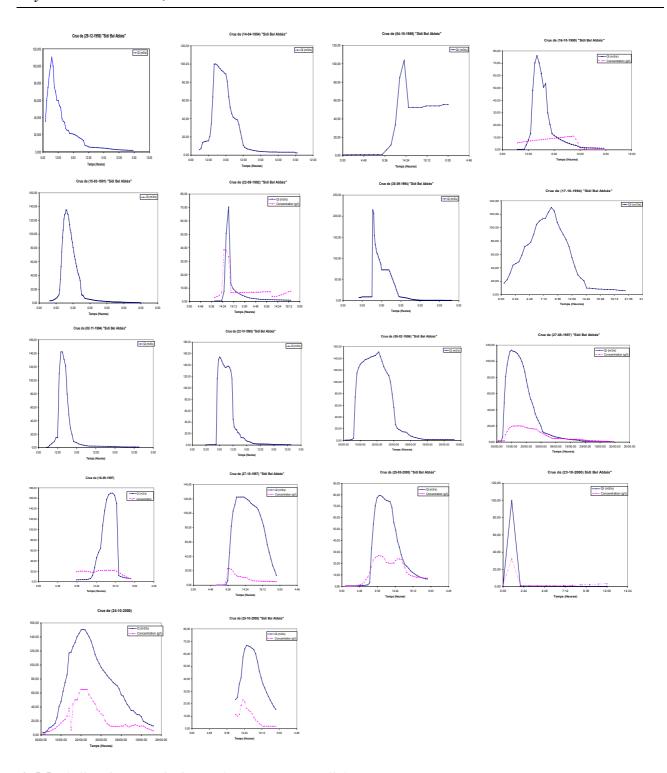
Description de la station de « Sidi Bel Abbés 11 03 01 »

Cette station est située sur les coordonnées Lambert (X = 199.07, Y = 219.75) elle occupe une superficie de 3000 Km². Elle a été mise en service en « 1942 » avec des durées d'observation de : (42-61, 68-73). La station de Sidi Bel Abbés possède une passerelle avec étagère inférieure, limnigraphe et des échelles limnimétriques.

Tableau Nº 01 : Les coordonnées de la station. [A.N.R.H]

Code de la station	Nom de la station	Oued	Coordonnées	
			X	Y
11-03-01	Sidi Bel Abbés	Oued Mekerra	199.07	219.75

Au cours d'une période débutante le 16-09-1942 jusqu'à le 04-05-2001, le nombre d'observation donc est de 6778 observations.


3. Données de Sidi Bel Abbès:

Les débits liquides instantanés ainsi que les concentrations ont été obtenues à partir de l'Agence Nationale des Ressources Hydraulique d'Oran d'une période de : 16/09/1942 jusqu'au 04/05/2001. Dix neuf (19) crues ont été sélectionnées d'après les débits liquides les plus importants (Fortes Crues) et présentées dans le tableau suivant :

Tableau Nº 02 : Chronologie des crues sélectionnées.

N°	Date	Nombre d'Observation
1	29 Décembre 50	70
2	14 Avril 54	68
3	04 Octobre 86	25
4	16 Octobre 90	41
5	15 Mars 91	130
6	22 Septembre 92	34
7	30 Septembre 94	116
8	17 Octobre 94	42
9	02 Novembre 94	59
10	22 Octobre 95	76
11	05 Février 96	66
12	27 Août 97	79
13	16 Septembre 97	28
14	27 Octobre 97	34
15	27 Septembre 99	22
16	25 Mai 00	4.5
17	23 Octobre 00	13
18	24 Octobre 00	56
19	25 Octobre 00	23

Cette sélection nous a permis de tracer les hydrogrammes de crues et les turbidigrammes comme suit :

4. Modélisation statistique du transport solide

Parmi les méthodes de contrôle des données, on a les méthodes de corrélation – régression pour l'homogénéisation à l'extension des données. Le choix du modèle est basé sur la valeur la plus élevée du coefficient de détermination « R² » pour l'ensemble des relations de corrélation (annuelles, saisonnières).

Ces relations peuvent servir de base pour :

- Le comblement des lacunes d'observation et par suite, l'évaluation des apports solides à différents pas de temps.
- L'amélioration des paramètres statistiques des séries courtes de débits solides par corrélation avec les séries longues de débits.
- L'interprétation du phénomène des transports solides.

Compte – tenu de l'influence saisonnière sur le phénomène des transports solides, nous avons naturellement cherché à établir des relations saisonnières, afin d'une part d'éviter les trop fortes dispersions, d'autre part de disposer d'échantillons suffisants de couples de valeurs.

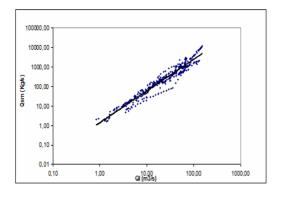


Fig (01): Relation entre Débit liquide – Débit solide pendant L'AUTOMNE.

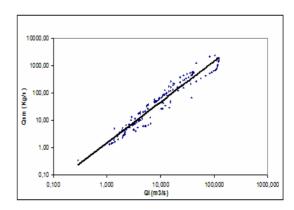


Fig (02) : Relation entre Débit liquide – Débit solide pendant **L'HIVER**.

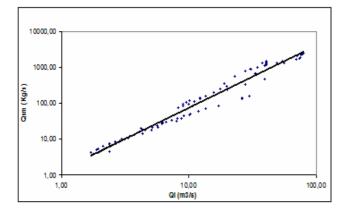


Fig (03): Relation entre Débit liquide – Débit solide pendant L'PRINTEMPS

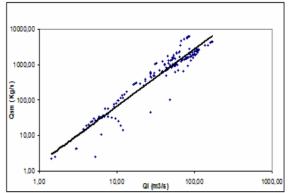


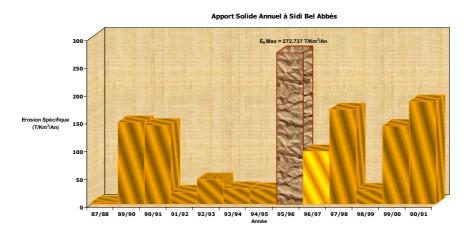
Fig (04) : Relation entre Débit liquide – Débit solide pendant **L'ETE.**

Pour les données de la station étudiée des regroupements effectués suivant quatre (04) saisons ont donné des résultats acceptables récapitulés dans le tableau ci-dessous :

Tableau Nº 03 : Différents coefficients à « Sidi Bel Abbés »

Période	Nombre de points	Coefficient A	Coefficient K	Coefficient de corrélation (%)	Relation
Annuel	777	1.6193	1.4357	93.63	Q _{sm} =1.4357 Q ^{1.6193}
Automne	386	1.619	1.427	93.78	Q _{sm} =1.427 Q ^{1.619}
Hivers	154	1.4933	1.5316	93.78	Q _{sm} =1.5316 Q ^{1.4933}
Printemps	83	1.7321	1.3823	95.80	Q _{sm} =1.3823 Q ^{1.7321}
Eté	154	1.6109	1.652	90.79	Q _{sm} =1.652 Q ^{1.6109}

Selon les valeurs du coefficient de détermination, on retient le **modèle puissance** pour toutes les relations pendant toutes les saisons.


Donc, d'après cette méthode d'analyse qui est la corrélation, on peut dire que la relation qui lie le débit solide au débit liquide et par suite la concentration est une relation **puissance**.

Le modèle $\mathbf{Q}_s = \mathbf{K} \cdot \mathbf{Q}_1$ a combiné avec la courbe des débits classés, nous a permis d'évaluer le débit solide moyen en suspension et total. Les résultats obtenus sont représentés dans le tableau suivant :

Tubleda IV VIIIpport solide unider a «olar zerizoses »						
Année	C moyenne	Apport Liquide	Ts Suspension	Ts charriage	Ts Total	Abrasion
	(Kg/m^3)	(Hm³)	(T/an)	(T/an)	(T/an)	(T/Km ² /an)
87/88	0,404	19,010	7 686,788	1 537,358	9 224,145	3,075
89/90	9,811	37,590	368 806,442	73 761,288	442 567,731	147,523
90/91	10,786	33,000	355 947,008	71 189,402	427 136,409	142,379
91/92	3,017	18,070	54 517,314	10 903,463	65 420,777	21,807
92/93	7,290	15,320	111 675,355	22 335,071	134 010,426	44, 670
93/94	5,902	12,060	71 177,831	14 235,566	85 413,397	28,471
94/95	1,561	42,960	67 060,560	13 412,112	80 472,672	26,824
95/96	9,749	69,950	681 932,066	136 386,413	818 318,480	272,773
96/97	11,507	20,730	238 546,337	47 709,267	286 255,604	95,419
97/98	10,271	41,470	425 940,225	85 188,045	511 128,270	170,376
98/99	7,376	8,760	64 612,938	12 922,588	77 535,525	25,845
99/00	17,835	19,730	351 875,919	70 375,184	422 251,103	140,750
00/01	18,599	24,880	462 734,395	92 546,879	555 281,274	185,094

250 962,552

Tableau N° 04 Apport solide annuel à « Sidi Bel Abbés »

50 192,510

301 155,062

100,385

5. Interprétation:

Moyenne

8,778

27,964

- 1- D'après les résultats de corrélation pour la station de Sidi Bel Abbés illustrés sur le tableau N°03, on note un coefficient de corrélation significatif, qui est en moyenne de 93%, presque constant pour toutes les saisons.
- 2- D'après les résultats du Tableau N° 04, la station de Sidi Bel Abbés évacue un apport solide annuel moyen de 300 000 tonnes, représentant un taux d'abrasion moyen de 100 tonnes/km²/an. L'année hydrologique 95/96 enregistre un tonnage le plus important de l'ordre de 800 000 tonnes, induit par une abrasion plus de 200 tonnes /km²/an.

6. Conclusion

L'étude du transport solide de l'oued Mekerra se heurte à l'insuffisance des données et aux mesures très discontinues, qualitative et quantitatives.

Dans ce bassin caractérisé par l'irrégularité de la pluviométrie, des hautes eaux et des crues très importantes qui sont la conséquence d'un ruissellement intensif des précipitations torrentielles, par un couvert végétal souvent discontinu, l'érosion est très active car c'est le résultat d'un processus de dénudation de sol et qui admet une signification morphologique et hydrologique, essentiellement sur les pentes fortes et les berges de l'Oued.

Concernant les relations statistiques de forme $Q_s = F(Q_l)$, les analyses mettent en évidence le modèle puissance pouvant être utilisé pour obtenir des relations acceptables, sous conditions que les données utilisées soient suffisantes du point de vue statistique et hydrologique (c'est à dire décrivant l'ensemble du régime hydrologique).

L'objectif de cette étude est d'améliorer la compréhension du phénomène de transport solide sous climat méditerranéen et semi aride et mettre au point des outils simples et pratiques permettant l'élaboration des données nécessaires à la planification, l'aménagement et la gestion des ressources hydrauliques pour lutter contre l'érosion et l'envasement des barrages qui provoquent la diminution des volumes d'eau utiles d'où cette dernière constitue un facteur déterminant du développement économique.

L'étude d'un cas particulier a permis de mettre en évidence l'intérêt :

- D'aborder le problème à l'échelle de l'évènement.
- ➤ D'élaborer des outils simples, faciles à mettre en œuvre et directement utilisables par le planificateur, le concepteur ou le gestionnaire des aménagements hydrauliques, pour la prédétermination et la prévision des apports solides en tout point de territoire.
- ➤ D'évaluer correctement les paramètres statistiques des apports solides sur un bassin donné, même dépourvu d'observation.
- La mise au point de modèles de simulation dès le stade de la conception pour le dimensionnement optimum des ouvrages.